วันศุกร์ที่ 1 กุมภาพันธ์ พ.ศ. 2556

ไอซี 555


ไอซี 555  เป็นวงจรรวม หรือวงจรเบ็ดเสร็จ ที่เรียกกันทั่วไปว่า ชิป ที่รู้จักกันดีในบรรดานักอิเล็กทรอนิกส์ ไอซีตัวนี้ได้รับการออกแบบ และประดิษฐ์โดยนักออกแบบชิปที่มีชื่อเสียง ชื่อนั่นคือนายฮันส์ อาร์ คาเมนซินด์ (Hans R. Camenzind) โดยเริ่มออกแบบเมื่อ พ.ศ. 2513 และแนะนำผลิตภัณฑ์ในปีถัดมา โดยบริษัทซิกเนติกส์ คอร์ปอเรชัน (Signetics Corporation) มีหมายเลขรุ่น SE555/NE555 และเรียกชื่อว่า "The IC Time Machine" มีการใช้อย่างกว้างขวาง ทั้งนี้เพราะสามารถใช้งานง่าย ราคาถูก มีเสถียรภาพที่ดี ในปัจจุบันนี้ บริษัทซัมซุงของเกาหลี สามารถผลิตได้ปีละกว่า 1 พันล้านตัว (ข้อมูล พ.ศ. 2546)
ไอซีไทเมอร์ 555 นับเป็นวงจรรวมที่สามารถใช้งานได้หลากหลายและเป็นที่นิยมมากที่สุดตัวหนึ่งเท่าที่เคยผลิตมา ภายในตัวประกอบด้วยทรานซิสเตอร์ 23 ตัว, ไดโอด 2 ตัว และรีซิสเตอร์อีก 16 ตัว เรียงกันบนชิปซิลิกอนแผ่นเดียว โดยติดตั้งในตัวถัง 8 ขา แบบมินิ DIP (dual-in-line package) นอกจากนี้ยังมีการผลิตไอซี 556 ซึ่งเป็น DIP แบบ 14 ขา โดยอาศัยการรวมไอซี 555 จำนวน 2 ตัวบนชิปตัวเดียว ขณะที่ 558 เป็นไอซีอีกตัวหนึ่งที่พัฒนาขึ้นจาก 555 เป็น DIP แบบ 16 ขา (quad) โดยรวมเอา 555 จำนวน 4 ตัว (โดยมีการปรับแต่งเล็กน้อย) มาไว้บนชิปตัวเดียว (DIS และ THR มีการเชื่อมต่อกันภายใน ส่วน TR นั้นมีค่าความไวที่ขอบแทนที่จะเป็นความไวทั้งระดับ) นอกจากนี้ยังมีรุ่นกำลังต่ำพิเศษ (ultra-low power) ของไอซี 555 นั่นคือ เบอร์ 7555 สำหรับไอซี 7555 นี้จะมีการเดินสายที่แตกต่างไปเล็กน้อย ทั้งยังมีการใช้กำลังไฟที่น้อยกว่า และอุปกรณ์ภายนอกน้อยกว่าด้วย
ไอซี 555 มีโหมดการทำงาน 3 โหมด ดังนี้
โมโนสเตเบิล (Monostable) ในโหมดนี้ การทำงานของ 555 จะเป็นแบบซิงเกิ้ลช็อต หรือวันช็อต (one-shot) โดยการสร้างสัญญาณครั้งเดียว ประยุกต์การใช้งานสำหรับการนับเวลา การตรวจสอบพัลส์ สวิตช์สัมผัส ฯลฯ
อะสเตเบิล (Astable) ในโหมดนี้ การทำงานจะเป็นออสซิลเลเตอร์ การใช้งาน ได้แก่ ทำไฟกะพริบ, กำเนิดพัลส์, กำเนิดเสียง, เตือนภัย ฯลฯ
ไบสเตเบิล (Bistable) ในโหมดนี้ ไอซี 555 สามารถทำงานเป็นฟลิปฟล็อป (flip-flop) ถ้าไม่ต่อขา DIS และไม่ใช้คาปาซิเตอร์ ใช้เป็นสวิตช์ bouncefree latched switches


การใช้งาน

   ขาของไอซีแต่ละขา มีหน้าที่ดังต่อไปนี้

   ขา   ชื่อ   หน้าที่
1   GND   กราวด์ หรือ คอมมอนส์
2   TR   พัลส์สั้นกระตุ้นทริกเกอร์เพื่อเริ่มนับเวลา
3   Q   ช่วงการนับเวลา เอาต์พุตจะอยู่ที่ +VCC
4   R   ช่วงเวลานับ อาจหยุดโดยการใช้พัลส์รีเซ็ต
5   CV   แรงดันควบคุมยอมให้เข้าถึงตัวหารแรงดันภายใน (2/3 VCC)
6   THR   เทรสโฮลด์ที่จุดช่วงเวลานับ
7   DIS   เชื่อมต่อกับคาปาซิเตอร์ตัวหนึ่ง ซึ่งเวลาคายประจุของมันจะมีผลต่อช่วงเวลาการนับ
8   V+, VCC   แรงดันจ่ายไฟบวก ซึ่งต้องอยู่ในช่วง +5 ถึง + 15 V

นายณรงค์ ขยันการนาวี


ทรานซิสเตอร์
« ตอบกลับ #2 เมื่อ: มกราคม 06, 2013, 10:44:44 PM »
1. ประวัติความเป็นมาของทรานซิสเตอร์
                ในช่วงเวลาก่อนปี พ.ศ. 2490  ประมาณ 40 ปี หลอดสุญญากาศเป็นอุปกรณ์อิเล็กทรอนิกส์ที่มีการพัฒนาและนำมาใช้งานมากที่สุด การใช้งานหลอดสุญญากาศมีปัญหาในการใช้งานมากเช่น กำลังไฟฟ้าสูญเสียมาก มีขนาดใหญ่ ชำรุดง่าย  กรรมวิธีผลิตยุ่งยาก เป็นต้น  เมื่อความต้องการใช้งานมากขึ้นหลอดสุญญากาศยิ่งมีปัญหามากขึ้น จึงได้มีผู้คิดค้นสิ่งประดิษฐ์ใหม่ๆ ทางด้านอิเล็กทรอนิกส์มาใช้งานแทนหลอดสุญญากาศ
                        ในปลายปี พ.ศ. 2490 บริษัทเบลล์เทเลโฟนจำกัด (Bell Telephone  CO.,LTD.) โดย จอห์น บาร์ดีน (John Bardeen) วิลเลียม  แบรดฟอร์  ช็อคเลย์ (William  Bradford Shockly) และวอลเตอร์ ฮอร์ส  แบรทเทน (Walter House  Bratain) ได้ทดลองวงจรขยายด้วยทรานซิสเตอร์ตัวแรกที่ห้องทดลองของบริษัทเบลล์เทเลโฟนเป็นสำเร็จ ทรานซิสเตอร์ซึ่งเป็นอุปกรณ์สารกึ่งตัวนำเมื่อเปรียบเทียบกับหลอดสุญญากาศก็คือ มีขนาดเล็ก น้ำหนักเบา ไม่ต้องมีตัวให้ความร้อน มีโครงสร้างแข็งแรงทนทาน กำลังไฟฟ้าสูญเสียน้อย ประสิทธิภาพสูง สามารถทำงานได้ทันทีเมื่อจ่ายไฟให้
                ทรานซิสเตอร์เป็นอุปกรณ์เซมิคอนดัคเตอร์ชนิดไบโพล่าร์ ซึ่งความหมายของไบโพล่าร์คือ อุปกรณ์หลายขั้วต่อ ทรานซิสเตอร์ได้จากการนำเอาสารกึ่งตัวนำชนิดพีและชนิดเอ็นมาต่อเรียงกัน

2. ชนิดของทรานซิสเตอร์
                การแบ่งชนิดของทรานซิสเตอร์สามารถแบ่งออกได้หลายวิธีแล้วแต่ผู้ผลิตว่าการแบ่งชนิดของทรานซิสเตอร์จะยึดถือรูปลักษณ์แบบไหน ถ้าแบ่งในรูปของการใช้งานก็จะแบ่งออกเป็น ทรานซิสเตอร์ที่ทำหน้าที่สวิทชิ่ง  ทรานซิสเตอร์กำลัง ทรานซิสเตอร์ความถี่สูง ฯลฯ  การแบ่งอีกวิธีหนึ่งซึ่งนิยมใช้กันมากในยุคแรกๆ คือ การแบ่งโดยใช้สารที่นำมาสร้างเป็นเกณฑ์ซึ่งสามารถแบ่งออกได้  2 ประเภทคือ
                2.1 เยอรมันเนียมทรานซิสเตอร์ (Germanium  transistor) เป็นทรานซิสเตอร์ยุคแรกๆ และเป็นชนิดที่มีกระแสรั่วไหลมากจึงไม่ค่อยมีผู้นิยมใช้
           2.2 ซิลิกอนทรานซิสเตอร์ (Silicon Transistor) เป็นทรานซิสเตอร์ที่มีประสิทธิภาพสูง มีกระแสรั่วไหลน้อย (Leakage Current) เป็นทรานซิสเตอร์ที่ใช้กันมากในยุคปัจจุบัน
             
3. โครงสร้างและสัญลักษณ์ของทรานซิสเตอร์
เนื่องจากทรานซิสเตอร์ถูกสร้างขึ้นมาจากสารกึ่งตัวนำชนิดพี (P) และเอ็น (N) ซึ่งนำมาต่อกัน 3 ชิ้น ทำให้เกิดรอยต่อขึ้นระหว่างเนื้อสาร 2 รอยต่อ หรือเรียกว่าจังชั่น (Junction) โดยที่สารที่อยู่ตรงกลางจะเป็นคนละชนิดกับสารที่อยู่หัวและท้าย มีขาต่อออกมาสำหรับนำไปใช้งาน 3 ขา ดังนั้นทรานซิสเตอร์จึงแบ่งออกเป็น 2 ชนิดตามโครงสร้างของสารที่นำมาใช้คือ
                1. ทรานซิสเตอร์ชนิด  พี เอ็น พี (PNP)
                2. ทรานซิสเตอร์ชนิด  เอ็นพีเอ็น (NPN)

ทรานซิสเตอร์ชนิด NPN
                เป็นทรานซิสเตอร์ที่สร้างจากสารกึ่งตัวนำชนิด N ชนิด P และชนิด N มาต่อเรียงกันตามลำดับ แล้วต่อสายออกมา 3 สาย เพื่อเป็นขาต่อกับวงจรสารกึ่งตัวนำชนิด P ซึ่งอยู่ตรงกลางจะเป็นจุดร่วม สารกึ่งตัวนำชนิด N จะทำหน้าที่จ่ายอิเล็กตรอนซึ่งจะไหลเป็นกระแสในวงจรส่วนนี้เราเรียกว่า อิมิตเตอร์ อิเล็กตรอนจะเคลื่อนที่ผ่านสารกึ่งตัวนำชนิด P ซึ่งเราเรียกว่าเบสส่วนเบสนี้จะเป็นตัวคอยควบคุมอิเล็กตรอนให้ไหลไปยังสารกึ่งตัวนำชนิด N ถัดไปได้มากหรือน้อยอิเล็กตรอนส่วนที่ผ่านเบสมาก็จะเคลื่อนที่มายังสารกึ่งตัวนำชนิด N ซึ่งเราเรียกว่า คอลเลคเตอร์ และกลายเป็นกระแสไหลในวงจรภายนอกต่อไป
 

รูปที่ 1 โครงสร้างและสัญลักษณ์ของทรานซิสเตอร์ชนิด NPN

ทรานซิสเตอร์ชนิด PNP
                คือทรานซิสเตอร์ที่สร้างจากสารกึ่งตัวนำชนิดพี ชนิดเอ็น และชนิดพี มาเรียงกันตามลำดับแล้วต่อสายจากแต่ละชิ้นส่วนออกมาเป็น 3 สายเพื่อต่อกับวงจรสารกึ่งตัวนำเอ็นจะเป็นจุดร่วม


รูปที่ 2 โครงสร้างและสัญลักษณ์ของทรานซิสเตอร์ชนิด PNP


4. ขาของทรานซิสเตอร์
1.       ขาคอลเลคเตอร์ (Collector) เรียกย่อๆ ว่าขา C เป็นขาที่มีโครงสร้างในการโด๊ปสารใหญ่ที่สุด
2.       ขาอิมิตเตอร์ (Emitter) เรียกย่อๆ ว่าขา E เป็นขาที่มีโครงสร้างใหญ่รองลงมาและจะอยู่คนละด้านกับขาคอลเลคเตอร์
3.   ขาเบส  (Base) เรียกย่อๆ ว่าขา B เป็นส่วนที่อยู่ตรงกลางระหว่าง C และ E มีพื้นที่ของโครงสร้างแคบที่สุดเมื่อเทียบกับอีก 2 ส่วน เมื่อจำแนกลักษณะการต่อตัวทรานซิสเตอร์จึงคล้ายกับการนำเอาไดโอด 2 ตัวมาต่อกัน

5. การทำงานของทรานซิสเตอร์
                จากการศึกษาเกี่ยวกับการไหลของกระแสภายในวงจรสารกึ่งตัวนำ การที่เราจะทำให้เกิดการไหลของกระแสหรือให้ทรานซิสเตอร์ทำงานได้นั้น จำเป็นจะต้องให้ไบอัสและกระแสที่ปรากฎทางด้านเอาท์พุทเราต้องสามารถควบคุมค่าของกระแสได้ด้วยจึงจะทำให้ทรานซิสเตอร์ขยายสัญญาณได้ตามความต้องการ
                การอธิบายการทำงานของทรานซิสเตอร์จำเป็นจะต้องเข้าใจการไหลในรูปของโฮลและอิเล็กตรอน รวมถึงการไบอัสด้วยซึ่งการไบอัสเป็นวิธีการที่จะทำให้ทรานซิสเตอร์พร้อมที่จะทำงานนั่นเอง ในกรณีของทรานซิสเตอร์มี 3 ขา การป้องกันแรงเคลื่อนที่เหมาะสมหรือไบอัสที่ถูกต้องจะทำให้ทรานซิสเตอร์ทำงานได้
                เมื่อพิจารณาโครงสร้างของทรานซิสเตอร์แล้วจะสามารถจัดรูปแบบการขยายสัญญาณโดยต้องมีอินพุทและเอาท์พุท เมื่อให้ขาหนึ่งเป็นอินพุทขาหนึ่งเป็นเอาท์พุท ขาที่เหลือก็จะต้องเป็นจุดร่วม (Common) อินพุทกับเอาท์พุท จากหลักการดังกล่าวเรากำหนดให้ระหว่าง B กับ E  เป็นอินพุท (Input) และระหว่าง B กับ C เป็นเอาท์พุท (Out put) ดังนั้นจะสามารถจัดรูปแบบการขยายได้ 3 แบบหรือ 3 คอมมอน
                เนื่องจากวัตถุประสงค์ของทรานซิสเตอร์สร้างมาจากหลักการที่ต้องการให้กระแสทางด้านอินพุทไปควบคุมกระแสเอาท์พุท ดังนั้นจะต้องไบอัสทางด้านเอาท์พุทเป็นไบอัสแบบย้อนกลับ (Reverse Bias) ถ้าให้ไบอัสตรงจะทำให้ทางด้านเอาท์พุทเป็นอิสระไม่ครบวงจรเอาท์พุท ทางด้านอินพุทจะให้ไบอัสตรง (Forward Bias) และแรงเคลื่อนที่มาไบอัสนี้ไม่จำเป็นจะต้องเป็นแรงเคลื่อนไฟฟ้าที่มีค่าสูงแต่อย่างไร เพราะถ้าให้กระแสอินพุทสูงเกินไปจะทำให้กระแสเอาท์พุทเกิดการอิ่มตัว

ไม่มีความคิดเห็น:

แสดงความคิดเห็น